In depth investigation of analytical methods for the determination of montelukast and bilastine in biological fluid and pharmaceutical dosage forms: A Review

 

Dr. Pinkal Patel1*, Zinal A. Panchal1, Sweta Patel1, Dipti Patel1

Department of Pharmaceutical Quality Assurance, Faculty of Pharmacy

Parul Institute of Pharmacy and Research, Parul University,

Post Limda, Waghodia-391760, Vadodara, Gujrat, India.

*Corresponding Author E-mail: pinkpharmacy@gmail.com

 

ABSTRACT:

Allergic rhinitis (AR) is a heterogeneous disorder that despite its high prevalence is often undiagnosed. It is characterized by one or more symptoms including sneezing, itching, nasal congestion and rhinorrhea. Many causative agents have been linked to allergic rhinitis (AR) including pollens, molds, dust mites and animal dander allergy. Montelukast and bilastine are used in the treatment of allergic rhinitis (AR). Montelukast and bilastine each drug reveals in vivo and in vitro. They are generally administrated as tablets. Determination of montelukast and bilastine in bulk dosage form, tablet dosage form and pharmaceutical dosage form. Method indicating human plasma stability and impurity profiling are also described for Montelukast and Bilastine drugs. Several analytical methods including UV, HPTLC and HPLC method has been developed. Estimation of montelukast and bilastine for quantitative and qualitative method can be used. In this review methods for determination of montelukast and bilastine in alone and in combination by UV and RP-HPLC techniques. This review covers most recent analytical methods such as various spectroscopic methods, chromatographic methods and other methods for determination of Montelukast and Bilastine in various pharmaceutical dosage forms. The following study illustrate the review on analytical method which includes estimating the anti-histamines drugs.

 

KEYWORDS: Montelukast, Bilastine, Anti-histamines, UV-Spectroscopy, RP-HPLC.

 

 


INTRODUCTION:

Rhinitis is broadly defined as inflammation of the nasal mucosa. It is a common disorder that affects up to 40% of the population. Allergic rhinitis (AR) is a common disorder that is strongly linked to asthma and conjunctivitis. The classic symptoms of the disorder are nasal congestion, nasal itch, rhinorrhea and sneezing1. Allergic rhinitis (AR) is caused by immunoglobulin E (IgE)-mediated reactions to inhaled allergens and is one of the most common chronic conditions globally.2

 

Montelukast sodium is chemically known as (S, E) – 2 - (1-((1-(3-(2- (7-chloroquinolin-2-yl) vinyl) phenyl) – 3 - (2-(2- hydroxypropan-2-yl) phenyl) propylthio) methyl) cyclopropyl) acetic acid. It is a leukotriene receptor antagonist utilised for the maintenance treatment of asthma and to relieve symptoms of seasonal allergies. it is normally administered orally.3 It has a molecular formula of C35H36ClNO3S. The molecular weight of montelukast sodium is 586.18 g/mol. It is white colored powder. it is a practically insoluble in acetonitrile and freely soluble in ethanol, methanol, and water. It blocks the action of leukotriene d4 on the cysteinyl leukotriene receptor in lungs and bronchial tubes. This reduces the bronchoconstriction caused by the leukotriene and results in less inflammation. this inhibits bronchospasm, allergic rhinitis. It inhibits exercise induced asthma and decrease both early and late responses to inhaled allergen. it relaxes the airways in mild asthma.4

 

Figure 1. Chemical structure of montelukast

 

Bilastine is chemically known as 2-[4-[2-[4-[1-(2-ethoxyethyl) benzimidazol-2-yl] piperidin-1- yl] ethyl] phenyl]-2-methylpropanoic acid. It is a new second generation H1-antihistamine accepted for the symptomatic treatment of allergic rhinitis (AR) and chronic urticaria.5 It has a molecular formula of C28H37N3O3. The molecular weight of bilastine is 463.622 g/mol. It is a white crystalline powder.6

 

Figure 2. Chemical structure of bilastine


 

Table 1. Methods for determination of montelukast single and combination with other drugs by UV spectroscopy, chromatography and other techniques

Sr.

no.

Drugs

Method

Description

Ref.no

1

Montelukast and loratadine

HPLC and derivative spectrophotometric methods

Stationary phase: Symmetry C18 column (250 × 4.6 mm, 5 µm)

Mobile phase: 0.025M sodium dihydrogen phosphate buffer (pH 3.7): acetonitrile (20:80 v/v)

Detection: 225 nm

Flow rate: 1 ml/min

Linearity range:

Montelukast: 100-600 µg/ml

Loratadine: 116-580 µg/ml

Recovery:Montelukast: 99.3-100.9 %

Loratadine: 98.4 to 101.2 %

7

2

Montelukast and its degradation products in pharmaceutical formulation

HPLC Method

Stationary phase: Inertsil® C18 column (250 × 4.6mm, 5 µm)

Mobile phase: Acetonitrile and 0.01M potassium dihydrogen phosphate buffer (pH 4) (3:7 v/v)

Detection: 355 nm

Flow rate: 1 ml/min

Linearity range: 150-250 µg/ml

Correlation coefficient: 0.9999

Recovery: 99.97 %

8

3

Montelukast API & in pharmaceutical dosage forms

UV-Spectroscopy method

Solvent: Alcohol

Detection: 345nm

Linearity range: 5-30 µg/ml

Correlation coefficient: 0.999

Recovery: 98-102 %

9

4

Montelukast sodium and bambuterol hydrochloride in tablets

RP-HPLC Method

Stationary phase: Inertsil ODS C-18 column (250 × 4.6mm, 5 µm)

Mobile phase:

mobile phase A:  0.025M sodium phosphate buffer: methanol (85:15 v/v) mobile phase B: Acetonitrile: methanol (85:15 v/v)

Detection: 218 nm, Flow rate: 1.5 ml/min

Retention time:Montelukast: 21.2 min, Bambuterol Hydrochloride: 5.8 min

Linearity range: 0.25-0.75 mg/ml

Correlation coefficient:

Montelukast: 0.9999, Bambuterol Hydrochloride: 0.9996

10

5

Montelukast sodium and theophylline in combined pharmaceutical formulation

Stability indicating UV spectrophotometric method

Solvent: Methanol

Detection:

Montelukast: 344 nm, Theophylline: 273 nm

Linearity range: Montelukast: 4-40 µg/ml, Theophylline: 4-28 µg/ml

Correlation coefficient: 0.9999

LOD:Montelukast: 0.27 µg/ml, Theophylline: 0.35 µg/ml

LOQ:Montelukast: 5.27 µg/ml, Theophylline: 7.14 µg/ml

11

6

Montelukast sodium and rupatadine fumarate

RP-HPLC Method

Stationary phase: Xttera C18 column (250 × 4.6 mm, 5 µm)

Mobile phase: methanol: acetonitrile: buffer (40:30:30 v/v/v)

Detection: 270 nm, Flow rate: 1 ml/min

Retention time:

Montelukast: 2.79 min, Rupatadine Fumarate: 3.97 min

Correlation coefficient:

Montelukast: 0.9999, Rupatadine fumarate: 0.9989

LOD:Montelukast: 0.167 µg/ml, Rupatadine fumarate: 0.141 µg/ml

LOQ:Montelukast: 0.507 µg/ml, Rupatadine fumarate:0.429 µg/ml

12

7

Montelukast in pharmaceutical dosage forms

HPLC Method

Stationary phase: C18 column (250 × 4.6 mm, 5 µm)

Mobile phase: 0.68 gm of Potassium dihydrogenphosphate (KH2PO4) +250 ml of water+750 ml of acetonitrile+2 ml of triethylamine (adjust pH to 6 with phosphoric acid)

Detection: 220 nm

Flow rate: 2 ml/min

Relative Standard Deviation: 0.90 %

13

8

Montelukast sodium and fexofenadine hydrochloride in tablet dosage form

HPLC Method

Stationary phase: Phenomenex C18 column (150 x 4.6 mm, 5 μm)

Mobile phase: 0.5% Orthophosphoric acid (pH 6): acetonitrile (40:60 v/v)

Detection: 240 nm, Flow rate: 1 ml/min

Retention time:

Montelukast: 4 min, Fexofenadine hydrochloride: 2.7 min

Linearity range: Montelukast: 6-10 µg/ml, Fexofenadine: 72-120 µg/ml

Correlation coefficient: 0.999

14

9

Montelukast sodium in tablet dosage form

UV and RP-HPLC method

Stationary phase: Princeton SPHER C18 column (250 × 4.6 mm, 5 µm)

Mobile phase: 10 mM ammonium acetate: acetonitrile (pH 5.5 adjusted with orthophosphoric acid) (25:75 v/v)

Detection: 280 nm, Flow rate: 1 ml/min

Linearity range:

HPLC:150–550 ng/ml, UV: 1-10 µg/ml

Correlation coefficient:

HPLC: 0.990, UV: 0.999

LOD:HPLC: 150 ng/ml, UV: 1 µg/ml

LOQ:HPLC: 500 ng/ml, UV: 5 µg/ml

15

10

Montelukast sodium and bambuterol hydrochloride in combined dosage form

RP-HPLC Method

Stationary phase: Phenomenex C18 column (250 × 4.6 mm, 5 μm)

Mobile phase: methanol: acetonitrile: 1% trichloroacetic (80:10:10 v/v/v)

Detection: 220 nm, Flow rate: 1 ml/min

Retention time:

Montelukast: 3.17 min, Bambuterol hydrochloride: 2.35 min

Linearity range: 0.5-10 µg/ml

Correlation coefficient:

Montelukast: 0.9973, Bambuterol hydrochloride: 0.9994

LOD:Montelukast: 0.04 µg/ml, Bambuterol hydrochloride: 0.05 µg/ml

16

11

Montelukast and rupatadine in their combined dosage Form

Derivative spectrophotometry method

Solvent: Methanol

Detection:

Montelukast: 297.27 nm, Rupatadine: 273.46 nm

Linearity range: 5-25 µg/ml

Correlation coefficient:

Montelukast: 0.9992, Rupatadine: 0.9994

LOD: Montelukast: 0.36 µg/ml, Rupatadine: 0.76 µg/ml

LOQ:Montelukast: 1.09 µg/ml, Rupatadine: 2.30 µg/ml

17

12

Montelukast sodium and d doxofylline in a combined form

HPLC method

Stationary phase: inertsil C8 column (250 × 4.6 mm, 5 μm)

Mobile phase: methanol: 10mM sodium phosphate (pH 6.5 with o-phosphoric acid) (75:25 V/V)

Detection: 230 nm, Flow rate: 1 ml/min

Retention time:

Montelukast: 5.506 min, Doxofylline: 3.418 min

Linearity range: Montelukast: 1.6-4.87 mg/ml, Doxofylline: 0.51-1.55 mg/ml

Recovery:Montelukast: 98.2-101.9%, Doxofylline: 98.1-101.7 %

18

13

Montelukast and ebastine in tablet dosage form

UV spectrophotometric method

Solvent: Methanol

Detection: 261.34 nm (Isoabsorptive point) and 253.00 nm (λmax of ebastine

Linearity range: 5-45 μg/ml

Correlation coefficient:

Montelukast: 0.998, Ebastine: 0.999

LOD:Montelukast: 0.18 µg/ml, Ebastine: 0.09 µg/ml

LOQ:Montelukast: 0.56 µg/ml, Ebastine: 0.29 µg/ml

Recovery:Montelukast: 100.13 %, Ebastine: 100.52 %

19

14

Montelukast

UV spectroscopic method

Solvent: sodium lauryl sulphate

Detection: 283.3 nm

Linearity range: 2-100 μg/ml

Correlation coefficient: 0.999

LOD: 1.234 μg/ml

LOQ: 3.735 μg/ml

20

15

Montelukast and fexofenadine method in bulk & combined tablet dosage form

UV spectroscopic method

Solvent: Methanol

Detection:Montelukast: 283 nm, Fexofenadine hydrochloride: 259.6 nm

Linearity range:Montelukast: 6-20 μg/ml, Fexofenadine hydrochloride: 24-120 μg/ml

Correlation coefficient:

Montelukast: 0.9985, Fexofenadine hydrochloride: 0.9927

LOD: Montelukast: 2.023 μg/ml, Fexofenadine hydrochloride: 5.94 μg/ml

LOQ:Montelukast: 0.6678 μg/ml, Fexofenadine hydrochloride: 18 μg/ml

 

21

16

Montelukast and Cetirizine in prepared formulations

UV spectroscopic method

Solvent: Methanol

Detection:

Montelukast: 217 nm, Cetirizine: 335 nm

Linearity range:

Montelukast: 2‐20 µg/ml, Cetirizine: 6‐28 µg/ml 

Correlation coefficient:

Montelukast: 0.9976, Cetirizine: 0.9971

LOD:Montelukast: 10.3 ng/ml, Cetirizine: 112 ng/ml

LOQ:Montelukast: 34.33 ng/ml, Cetirizine: 373.33 ng/ml

22

17

Montelukast sodium and bambuterol hydrochloride in bulk and tablet dosage formulation.

UV spectroscopic method

Solvent: Methanol

Detection:

Montelukast: 283 nm, Bambuterol: 265 nm

Linearity range:

Montelukast: 10-80 µg/ml, Bambuterol: 40–240 µg/ml 

Correlation coefficient:

Montelukast: 0.9996, Bambuterol: 0.999

LOD:Montelukast: 2.53 µg/ml,Bambuterol: 5.54 µg/ml 

23

18

Montelukast sodium and levocetirizine hydrochloride in bulk and in formulation

RP-HPLC method

Mobile phase: Acetonitrile: methonal: water (40:40:20 v/v)

Detection: 232 nm, Flow rate: 1 ml/min

Retention time:

Montelukast: 11.81min, levocetirizine: 6.01 min

Linearity range: 0.030 to 0.060 mg/ml

Correlation coefficient:

Montelukast: 0.991, Levocetirizine: 0.994

24

19

Montelukast sodium and Fexofenadine HCL in combined tablet dosage form

UV spectroscopic method

Solvent: Methanol

Detection:

Montelukast: 288.17nm

Fexofenadine: 289.12nm 

Linearity range:

Montelukast: 2-10 µg/ml

Fexofenadine: 24-120 µg/ml

Recovery:

Montelukast: 98.12-99.96%

Fexofenadine: 99.12–99.97%

Relative standard deviation: <2.0%

25

20

 Montelukast sodium in bulk and tablet dosage form

HPLC method

Stationary phase: Princeton SPHER ULTIMA C18 100A (250 × 4.6 mm, 5 μm)

Mobile phase:  Ortho phosphoric acid: Methanol (10:90 v/v)

Detection: 284 nm

Flow rate: 1 ml/min

Linearity range: 1-6 µg/ml

Correlation coefficient:

Montelukast in bulk: 0.9982

Montelukast in tablet: 0.9979

LOD: 0.0011 µg/ml

LOQ: 0.0033 µg/ml

26

21

Montelukast and fexofenadine in pharmaceutical dosage form

HPLC method

Stationary phase: Hypersil ODS-C18 (250 × 4.6 mm, 5 μm)

Mobile phase: Methanol: acetonitrile: 1% trifluoroacetic acid (80:10:10 v/v/v)

Detection: 210 nm, Flow rate: 1 ml/min

Retention time: Montelukast: 5.1 min, Fexofenadine: 3.7 min

Linearity range: 10-60 μg/ml

Recovery:Montelukast: 99.16-99.59 %, Fexofenadine: 99.86-99.89 %

27

22

Montelukast and ebastine in bulk and in tablet formulation

HPLC method

Stationary phase: Lichrocart C18 column (250 × 4.6 mm, 5 μm)

Mobile phase: methanol and water (80: 20 v/v) (pH 3 adjusted with orthophosphoric acid)

Detection: 268 nm, Flow rate: 1 ml/min

Retention time:

Montelukast: 6.56 min, Ebastine: 2.95 min

Linearity range: 5-25 μg/ml

Correlation coefficient: 0.999

LOD:Montelukast: 1.05 μg/ml, Ebastine: 1.13 μg/ml

LOQ:Montelukast: 3.20 μg/ml, Ebastine: 3.44 μg/ml

28

23

Montelukast and ebastine in tablet dosage forms

RP-HPLC Method

Stationary phase: Kromosil (250 × 4.6 mm, 5 μm)

Mobile phase: potassium dihydrogen phosphate buffer: Acetonitrile (60:40 v/v) (pH 4.8 adjusted with orthophosphoric acid)

Detection: 244 nm, Flow rate: 1 ml/min

Retention time:Montelukast: 3.436 min, Ebastine: 2.447 min

Linearity range:Montelukast: 20-120 μg/ml, Ebastine: 25-150 μg/ml

Correlation coefficient: 0.999

Recovery:Montelukast: 99.69 %, Ebastine: 99.93 %

LOD:Montelukast: 0.33 μg/ml, Ebastine: 0.11 μg/ml

LOQ:Montelukast: 0.43 μg/ml, Ebastine: 0.14 μg/ml

29

24

Montelukast Sodium and doxofylline in bulk and pharmaceutical dosage form

RP-HPLC method

Stationary phase: Hypersil BDS C18 column (250 × 4.6 mm, 5 μm)

Mobile phase: Ammonium acetate: methanol (60:40 v/v)

Detection: 219 nm, Flow rate: 1 ml/min

Retention time:Montelukast: 4.81 min, Doxofyllin: 2.34 min

Linearity range: Montelukast: 1.5-3.5 mg/ml, Doxofyllin: 60-140 mg/ml

Correlation coefficient: 0.999

LOD:Montelukast: 0.021 µg/ml, Doxofyllin: 1.54 µg/ml

LOQ:Montelukast: 0.06 µg/ml, Doxofyllin: 4.68 µg/ml

Recovery:Montelukast: 99.96 %, Doxofyllin: 100.85 %

30

25

Montelukast in pharmaceutical dosage form

RP-HPLC method

Stationary phase: BDS C8 column (250 × 4.6 mm, 5 μm)

Mobile phase: 0.01M Potassium di-hydrogen orthophosphate buffer: acetonitrile (35:65 v/v)

Detection: 222 nm

Flow rate: 1 ml/min

Retention time: 3.08 min

Linearity range: 10 - 100 µg/ml

Correlation coefficient: 0.9996

LOD: 0.03 µg/ml

LOQ: 0.09 µg/ml

31

26

Montelukast sodium and levocetirizine dihydrochloride tablets

RP-HPLC method

Stationary phase: Hypersil BDS C8 column (250 × 4.6 mm, 5 μm)

Mobile phase: 2.8g of disodium hydrogen orthophosphate: acetonitrile (90: 10 v/v) (pH 7 adjusted with orthophosphoric acid)

Detection: 230 nm

Flow rate: 1 ml/min

Run time: 15 min

Retention time:

Montelukast: 6.89 min

Levocetirizine: 4.05 min

Linearity range:

Montelukast: 12.42-74.52 µg/ml

Levocetirizine: 6.22-37.34 µg/ml

Correlation coefficient: 0.9999

32

27

Montelukast Sodium and fexofenadine hydrochloride in pharmaceutical preparations

RP-HPLC Method

Stationary phase: Hypersil ODS C18 column (250 × 4.6 mm, 5 μm)

Mobile phase: methanol: acetonitrile: 1% trifluoroacetic acid (80:10:10 v/v/v)

Detection: 210 nm, Flow rate: 1 ml/min

Retention time:

Montelukast: 5.1min, Fexofenadine: 3.7 min

Linearity range:

Montelukast: 2.5-15 µg/ml, Fexofenadine: 30-180 µg/ml

Correlation coefficient:

Montelukast: 0.998, Fexofenadine: 0.999

LOD:Montelukast: 0.000265 µg/ml, Fexofenadine: 0.000177 µg/ml

LOQ:Montelukast: 0.000177 µg/ml, Fexofenadine: 0.000517 µg/ml

Recovery:Montelukast: 99.84 %, Fexofenadine: 99.95 %

33

 

Table 2. Methods for determination of bilastine single by UV spectroscopy, chromatography and other techniques 

Sr.no.

Drugs

Method

Description

Ref.no

 

1

Bilastine

HPLC method

Stationary phase: Shim-pack® RP-18 column (150 × 4.6 mm, 5 μm)

Mobile phase: 0.3 % triethylamine (pH adjusted to 6 with 20% formic acid): acetonitrile (55:45 v/v)

Detection: 210 nm

Flow rate: 1 ml/min

Run time: 5 min

Linearity range: 3-30 μg/ml

Correlation coefficient: 0.9998

34

2

Bilastine in pharmaceutical dosage form

RP-HPLC method

Stationary phase: Inertsil ODS C18 column (250 × 4.6 mm, 5 μm)

Mobile phase: Methanol: acetonitrile (60:40 v/v)

Detection: 254 nm, Flow rate: 1.2 ml/min

Retention time: 2.8 min

Linearity range:RP-HPLC: 10-250 μg/ml, UV: 10-60 μg/ml

Correlation coefficient:

RP-HPLC: 0.999, UV: 0.998

LOD: 0.0419 μg/ml, LOQ: 0.1271 μg/ml

35

3

Bilastine in bulk and pharmaceutical formulation

Stability indicating RP-HPLC method

Stationary phase:  Phenomenex gemini C18 column (150 × 4.6 mm, 5 µm)

Mobile phase: formic acid: methanol (50:50 v/v)

Detection: 282 nm, Flow rate: 0.2 ml/min

Retention time: 2.167 min

Linearity range: 5-100 μg/ml

Correlation coefficient: 0.9999

LOD: 0.08931 μg/ml, LOQ: 0.27063 μg/ml

36

4

Bilastine

HPLC method

Stationary phase:  Phenomenex gemini C18 column (150 × 4.6 mm, 5 µm)

Mobile phase: 7.7 gm of ammonium acetate + 1000ml of water: acetonitrile: methanol (45:25:30 v/v/v)

Detection: 254 nm, Flow rate: 1 ml/min

Retention time: 3.718 min

Linearity range: 80-120 ppm

Correlation coefficient: 0.999

37

5

Bilastine from bulk and formulation

RP-HPLC method

Stationary phase: ARP C18 column (250 × 4.6 mm, 5 μm)

Mobile phase: Methanol: Orthophosphoric acid buffer (70:30 v/v))

Detection: 280 nm, Flow rate: 1 ml/min

Retention time: 3.280 min

Rum time: 40 min

Linearity range: 5-30μg/ml

Correlation coefficient: 0.997

LOD: 0.2177μg/ml, LOQ: 0.6597μg/ml

38

6

Bilastine in bulk and pharmaceutical formulation

UV spectroscopic method

Solvent: Methanol

Linearity range: 10-140 μg/ml

A. Zero order method

Detection: 281.60 nm

Correlation coefficient:

0.1M NaOH: 0.9991, Phosphate buffer (pH 2): 0.9995,

Distilled water: 0.9994

B. First order method:

Detection: 280.2-280.6 nm

Correlation coefficient:

0.1M NaOH: 0.9994 μg/ml, Phosphate buffer (pH 2): 0.9993 μg/ml

Distilled water: 0.9992 μg/ml

39

 


CONCLUSION:

So, from all above information it should be concluded that various spectroscopic methods, chromatographic methods and other methods developed and validated for estimation of montelukast and bilastine. According to this review it was concluded that different spectroscopic and chromatographic methods for montelukast in alone or in combination and for bilastine in alone. It was observed that, chromatographic method flow rate is 1 ml/min to get good resolution time. It also observed that the spectroscopic methods common solvent is methanol. Most of methods were of RP-HPLC and UV because these methods provided with best available reliability, analysis time, repeatability, and sensitivity.

 

REFERENCE:

1.      Small P, Kim H. Allergic rhinitis. Allergy, Asthma & Clinical Immunology. 2011;7(1):1-8.

2.      Bousquet J, Anto JM, Bachert C, Baiardini I, Bosnic-Anticevich S, Canonica GW, Melén E, Palomares O, Scadding GK, Togias A, Toppila-Salmi S. Allergic rhinitis. Nature Reviews Disease Primers. 20203;6(1):1-17.

3.      Singh K, Bagga P, Shakya P, Kumar A, Khalid M, Akhtar J, Arif M. Validated UV Spectroscopic Method for Estimation of Montelukast Sodium. International Journal of Pharmaceutical Sciences and Research. 20151;6(11):4728-4732.

4.      Chaudhary M, Kumar P, Thapliyal D. Analytical method development and validation for determination of Montelukast by UV-spectroscopy in API and in pharmaceutical dosage forms. International Journal of Pharmacy and Biological Sciences. 2018; 4:482-487.

5.      Lavorini F, Matucci A, Rossi O, Pistolesi M, SKY study investigators. Concomitant bilastine and montelukast as additive therapy for seasonal allergic rhinoconjunctivits and mild‐to‐moderate asthma. The SKY study. Allergy. 2020;75(3):675-678.

6.      Rekha K, Aruna R, Mathappan R, Manasa Rekha M, Karthik S. Formulation and development of Bilastine tablets 20 mg. World Journal of Pharmaceutical Research. 2019 Apr;8(7):2197-2224.

7.      Drug bank, bilastine. [May 2016] Available from: https://go.drugbank.com/drugs/DB11591. [Accessed on 11 Jan 2021].

8.      Radhakrishna T, Narasaraju A, Ramakrishna M, Satyanarayana A. Simultaneous determination of montelukast and loratadine by HPLC and derivative spectrophotometric methods. Journal of pharmaceutical and biomedical analysis. 2003;31(2):359-68.

9.      Eldin AB, Shalaby AA, El-Tohamy M. Development and validation of a HPLC method for the determination of montelukast and its degradation products in pharmaceutical formulation using an experimental design. Acta Pharmaceutica Sciencia. 2011;53(1):45-56.

10.   Chaudhary M, Kumar P, Thapliyal D. Analytical method development and validation for determination of Montelukast by UV-spectroscopy in API and in pharmaceutical dosage forms. International Journal of Pharmacy and Biological Sciences. 2018; 4:482-487.

11.   Patil S, Pore YV, Kuchekar BS, Mane A, Khire VG. Determination of montelukast sodium and bambuterol hydrochloride in tablets using RP HPLC. Indian journal of pharmaceutical sciences. 2009;71(1):58-61.

12.   Adat P, Dyade G, Hirave R, Bendgude R, Gaikwad s. Stability indicating UV spectrophotometric method for simultaneous estimation of montelukast sodium and theophylline in combined pharmaceutical formulation. International Research Journal of Pharmacy. 2018;9(8):100-106.

13.   Dighe NS, Balsane AS. Method development and validation of Rupatadine fumarate and Montelukast sodium by RP-HPLC. International journal of Pharmaceutical Chemistry. 2015;5(2):57-65.

14.   Hasin F, Hossain MM, Uddin MD, Bhowmick A. Development of high-performance liquid chromatography (HPLC) method for the determination of montelukast in pharmaceutical dosage forms. International Journal of Public Health and Clinical Sciences. 2018;5(3):181-191.

15.   Tamilselvi N, Sruthi K. Development of validated HPLC method for Simultaneous estimation of Fexofenadine hydrochloride and Montelukast Sodium in tablet dosage form. International Journal of Pharmaceutical Sciences and Research. 2012;3(12):4876-4881.

16.   Muralidharan S, Qi LJ, Yi LT, Kaur N, Parasuraman S, Kumar J, Venugopal V, Raj PV. Newly developed and validated method of montelukast sodium estimation in tablet dosage form by ultraviolet spectroscopy and reverse phase-high performance liquid chromatography. PTB Reports. 2016;2(2):27-30.

17.   Patel SA, Patel SK, Patel DJ, Patel NJ. Analytical method development and validation of montelukast sodium and bambuterol hydrochloride in combined dosage form by RP-HPLC. International Journal of PharmTech Research. 2010;2(3):1767-1771.

18.   Patel PG, Vaghela VM, Rathi SG, Rajgor NB, Bhaskar VH. Derivative spectrophotometry method for simultaneous estimation of rupatadine and montelukast in their combined dosage form. Journal of young pharmacists. 2009;1(4):354-358.

19.   Revathi R, Ethiraj T, Thenmozhi P, Saravanan VS, Ganesan V. High performance liquid chromatographic method development for simultaneous analysis of doxofylline and montelukast sodium in a combined form. Pharmaceutical methods. 2011;2(4):223-228.

20.   Savsani J, Goti P, Patel P. Simultaneous UV spectrophotometric method for estimation of Ebastine and Montelukast sodium in tablet dosage form by Q-ratio method. International Journal of Chem Tech Research. 2013;5(1):47-55.

21.   Pallavi K, Babu S. Validated UV Spectroscopic method for estimation of Montelukast sodium from bulk and tablet formulations. International Journal of Advances in Pharmacy, Biology and Chemistry. 2012;1(4):450-453.

22.   Patle D, Nagar S. UV-visible Spectrophotometric Estimation of Montelukast and Fexofenadine by Simultaneous Equation Method in Bulk & Combined Tablet dosage form. Current Trends in Biotechnology and Pharmacy. 2017;11(4):382-388.

23.   Pourghazi K, Khoshhesab ZM, Golpayeganizadeh AL, Shapouri MR, Afrouzi H. Spectrophotometric determination of cetirizine and montelukast in prepared formulations. International Journal of Pharmacy and Pharmaceutical Sciences. 2011;3(2):128-130.

24.   Pawar V, Pai S, Roa GK. Development and validation of UV spectrophotometric method for simultaneous estimation of montelukast sodium and bambuterol hydrochloride in bulk and tablet dosage formulation. Jordan Journal of Pharmaceutical Sciences. 2008;1(2):152-157.

25.   Ramesh J, Jayalakshmi B, Vijayamirtharaj R, Arul Prakasam KC. Simultaneous estimation of montelukast sodium and levocetirizine hydrochloride by RP-HPLC method. Asian Journal of Research in Chemistry. 2010; 3(4): 1069-1072.

26.   Chabukswar AR, Choudhari VP, Sharma SN, Bari NA, Ghuge D. Ratio derivative spectrophotometry method for simultaneous estimation of montelukast and fexofenadine HCl in their combined dosage form. Asian Journal of Research in Chemistry. 2012;5(5): 637-641.

27.   Phadtare DG, Pawar AR, Kulkarni RR, Patil GK. Method development and validation of Montelukast sodium in bulk and tablet formulation by HPLC. Asian Journal of Research in Chemistry. 2016; 9(7): 339-342.

28.   Chundawat RS, Sarangdevot YS, Rathore RPS, Sisodiya DS, Rathore US. Method development and validation for simultaneous estimation of montelukast and fexofenadine in pharmaceutical dosage form by HPLC Method. Research Journal of Pharmacy and Technology. 2013;6(10):1102-1106.

29.   Shrikrishna B, Nisharani R. Analytical method development and validation for simultaneous estimation of montelukast and ebastine by HPLC. Research Journal of Pharmacy and Technology. 2015; 8(1):01-05.

30.   Hemalatha S, Sireesha R, Sivagami B, Pavan kumar V, Chandrasekar R. Validation of assay for simultaneous estimation of ebastine and montelukast in tablet dosage forms by RP-HPLC Method. International Journal for Pharmaceutical Research Scholars. 2018; 7(1):78-89.

31.   Marakatham S, Divya B, SathishKumar M. Analytical method development and validation for simultaneous estimation of doxofylline and montelukast sodium in bulk and pharmaceutical dosage form. ARC Journal of Pharmaceutical Sciences. 2017;3(1):7-18.

32.   Haque AM, Prashanth K, Manikanta A, Hasan S, Pradeep T, Nivedita G, Diwan PV. Stability indicating RP-HPLC method for the estimation of montelukast in pharmaceutical dosage form. IOSR Journal of Pharmacy and Biological Sciences. 2012;1(6):31-36.

33.   Jayasimha N, Krishna RV, Sasi Kiran Goud S. Development and validation of RP-HPLC method for simultaneous determination of montelukast sodium and levocetirizine dihydrochloride tablets. Der Pharmacia Sinica. 2015;6(9):8-14.

34.   Tukaram MK, Risha RW, Rajendra BK. Development and validation of RP-HPLC method for estimation of montelukast sodium and fexofenadine hydrochloride in pharmaceutical preparations. Chemical Science Transactions. 2013;2(3):889-899.

35.   da Silva AT, Brabo GR, Marques ID, Bajerski L, Malesuik MD, Paim CS. UV spectrophotometric method for quantitative determination of Bilastine using experimental design for robustness. Drug Analytical Research. 2017;1(2):38-43.

36.   Chowdary VA, Kota A, Muneer S. Method development and validation of new RP-HPLC method for the estimation of bilastine in pharmaceutical dosage form. World Journal of Pharmacy and Pharmaceutical Sciences. 2017;6(8):2297-2315.

37.   Prathyusha P, Sundararajan R, Bhanu P, Mukthinuthalapati MA. A new stability indicating RP-HPLC method for determination of Bilastine in bulk and pharmaceutical formulation. Research Journal of Pharmacy and Technology. 2020;13(6):2849-2853.

38.   Sharma P, Gupta SK, Kumar N, Dahiya M, Nagar M. Method development and validation of bilastine by HPLC. International Journal of Advanced Science and Technology. 2020;29(7): 13751 – 13758.

39.   Pardeshi PP, Gaware VM., Dhamak K B. Development and validation of RP-HPLC method for the estimation of bilastine from bulk and formulation. Asian Journal of Pharmaceutical Analysis. 2020; 10(2):109-111.

40.   Peethala P, Sundararajan R. UV spectrophotometric method for determination of Bilastine in bulk and pharmaceutical formulation. Research Journal of Pharmacy and Technology. 2020; 13(2):933-938.

 

 

 

Received on 03.02.2021            Modified on 25.03.2021

Accepted on 19.04.2021           © RJPT All right reserved

Research J. Pharm. and Tech 2021; 14(12):6761-6767.

DOI: 10.52711/0974-360X.2021.01167